14 (a) (i) On the same graph, draw sketches of the curve $y=x^{3}$ and the line $y=3-2 x$.
(ii) Use your sketch to explain why the equation $x^{3}+2 x-3=0$ has only one root.
(b) (i) Show by differentiation that there are no stationary points on the curve $y=x^{3}+3 x-4$. [3]
(ii) Hence explain why the equation $x^{3}+3 x-4=0$ has only one root.
(c) (i) Use the factor theorem to find an integer root of the equation $x^{3}+x-10=0$.
(ii) Write the equation $x^{3}+x-10=0$ in the form $(x-a)\left(x^{2}+p x+q\right)=0$ where a, p and q are values to be determined.
(iii) By considering the quadratic equation $x^{2}+p x+q=0$ found in part (ii), show that the cubic equation $x^{3}+x-10=0$ has only one root.
(d) You are given that r and s are positive numbers. What do the results in parts (a), (b) and (c) suggest about the equation $x^{3}+r x-s=0$?

3 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=x^{3}-5 x^{2}+2 x+8$.
(i) Find the remainder when $\mathrm{f}(x)$ is divided by $(x+1)$.
(ii) Solve the equation $\mathrm{f}(x)=0$.

7 (a) Determine whether or not each of the following is a factor of the expression $x^{3}-7 x+6$. You must show your working.
(i) $(x-2)$
(ii) $(x+1)$
(b) (i) Factorise the function $\mathrm{f}(x)=x^{3}-7 x+6$.
(ii) Solve the equation $\mathrm{f}(x)=0$.

3 The function $\mathrm{f}(x)=x^{3}+a x+6$ is such that when $\mathrm{f}(x)$ is divided by $(x-3)$ the remainder is 12 .
(i) Show that the value of a is -7 .
(ii) Factorise $\mathrm{f}(x)$.

6 The function $\mathrm{f}(x)=x^{3}-4 x^{2}+a x+b$ is such that

- $x=3$ is a root of the equation $\mathrm{f}(x)=0$,
- when $\mathrm{f}(x)$ is divided by $(x-1)$ there is a remainder of 4 .
(i) Find the value of a and the value of b.
(ii) Solve the equation $\mathrm{f}(x)=0$.

8 The cubic polynomial $\mathrm{f}(x)=x^{3}+a x+6$, where a is a constant, has a factor of $(x+3)$.
(i) Find the value of a.
(ii) Hence or otherwise, solve the equation $\mathrm{f}(x)=0$ for this value of a.

2 The function $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=x^{3}-4 x^{2}+5 x-2$.
(i) Find the remainder when $\mathrm{f}(x)$ is divided by $(x+2)$.
(ii) Show that $(x-1)$ is a factor of $\mathrm{f}(x)$.
(iii) Hence solve the equation $\mathrm{f}(x)=0$.

9 You are given that $\mathrm{f}(x)=x^{3}-4 x^{2}+x+6$.
(i) Find the remainder when $\mathrm{f}(x)$ is divided by $(x-1)$.
(ii) Show that $(x-3)$ is a factor of $\mathrm{f}(x)$.
(iii) Hence solve the equation $\mathrm{f}(x)=0$.

11 (a) You are given that $\mathrm{f}(x)=x^{3}-3 x^{2}-4 x$.
(i) Find the three points where the curve $y=\mathrm{f}(x)$ cuts the x-axis.
(ii) Sketch the graph of $y=\mathrm{f}(x)$.
(b) You are given that $\mathrm{g}(x)=x^{3}-3 x^{2}-4 x+12$.
(i) Find the remainder when $\mathrm{g}(x)$ is divided by $(x+1)$.
(ii) Show that $(x-2)$ is a factor of $g(x)$.
(iii) Hence solve the equation $\mathrm{g}(x)=0$.

9 The cubic equation $x^{3}+a x^{2}+b x-26=0$ has 3 positive, distinct, integer roots.
Find the values of a and b.

