OCR Additional Maths Exam Questions -Factor and Remainder Theorems

14	(a)	(i) On the same graph, draw sketches of the curve $y = x^3$ and the line $y = 3 - 2x$.	[2]
		(ii) Use your sketch to explain why the equation $x^3 + 2x - 3 = 0$ has only one root.	[1]
	(b)	(i) Show by differentiation that there are no stationary points on the curve $y = x^3 + 3x - 4$.	[3]
		(ii) Hence explain why the equation $x^3 + 3x - 4 = 0$ has only one root.	[1]
	(c)	(i) Use the factor theorem to find an integer root of the equation $x^3 + x - 10 = 0$.	[1]
		(ii) Write the equation $x^3 + x - 10 = 0$ in the form $(x - a)(x^2 + px + q) = 0$ where a, p and q values to be determined.	are [2]
		(iii) By considering the quadratic equation $x^2 + px + q = 0$ found in part (ii), show that the cuequation $x^3 + x - 10 = 0$ has only one root.	ibic [1]
	(d)	You are given that r and s are positive numbers. What do the results in parts (a), (b) and suggest about the equation $x^3 + rx - s = 0$?	(c) [1]
3	The	function $f(x)$ is defined by $f(x) = x^3 - 5x^2 + 2x + 8$.	
	(i)	Find the remainder when $f(x)$ is divided by $(x + 1)$.	[2]
		Solve the equation $f(x) = 0$.	[3]
	(22)		[0]
7	(a)	Determine whether or not each of the following is a factor of the expression $x^3 - 7x + 6$. You must show your working.	
		(i) $(x-2)$	[2]
		(ii) $(x+1)$	[1]
	(b)	(i) Factorise the function $f(x) = x^3 - 7x + 6$.	[3]
		(ii) Solve the equation $f(x) = 0$.	[1]
3	The f	function $f(x) = x^3 + ax + 6$ is such that when $f(x)$ is divided by $(x - 3)$ the remainder is 12.	
	(i)	Show that the value of a is -7 .	[2]
	(ii)	Factorise $f(x)$.	[3]
6	The	function $f(x) = x^3 - 4x^2 + ax + b$ is such that	
		x = 3 is a root of the equation $f(x) = 0$, when $f(x)$ is divided by $(x - 1)$ there is a remainder of 4.	
	(i)	Find the value of a and the value of b .	[4]
	(ii)	Solve the equation $f(x) = 0$.	[3]

8	The cubic polynomial $f(x) = x^3 + ax + 6$, where a is a constant, has a factor of $(x + 3)$.	
	(i) Find the value of a.	[2]
	(ii) Hence or otherwise, solve the equation $f(x) = 0$ for this value of a.	[4]
2	The function $f(x)$ is defined by $f(x) = x^3 - 4x^2 + 5x - 2$.	
	(i) Find the remainder when $f(x)$ is divided by $(x + 2)$.	[2]
	(ii) Show that $(x-1)$ is a factor of $f(x)$.	[1]
	(iii) Hence solve the equation $f(x) = 0$.	[4]
)	You are given that $f(x) = x^3 - 4x^2 + x + 6$.	
	(i) Find the remainder when $f(x)$ is divided by $(x-1)$.	[1]
	(ii) Show that $(x-3)$ is a factor of $f(x)$.	[2]
	(iii) Hence solve the equation $f(x) = 0$.	[4]
11	(a) You are given that $f(x) = x^3 - 3x^2 - 4x$.	
	(i) Find the three points where the curve $y = f(x)$ cuts the x-axis.	[4]
	(ii) Sketch the graph of $y = f(x)$.	[1]
	(b) You are given that $g(x) = x^3 - 3x^2 - 4x + 12$.	
	(i) Find the remainder when $g(x)$ is divided by $(x + 1)$.	[2]
	(ii) Show that $(x-2)$ is a factor of $g(x)$.	[1]
	(iii) Hence solve the equation $g(x) = 0$.	[4]
	The cubic equation $x^3 + ax^2 + bx - 26 = 0$ has 3 positive, distinct, integer roots.	

Find the values of a and b.

[5]